

RDq / DRD5

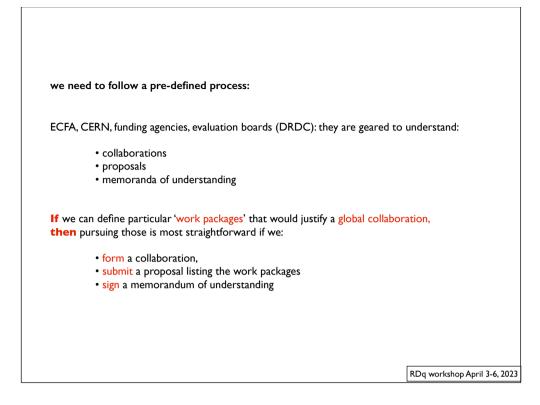
The mission of RDq is to:

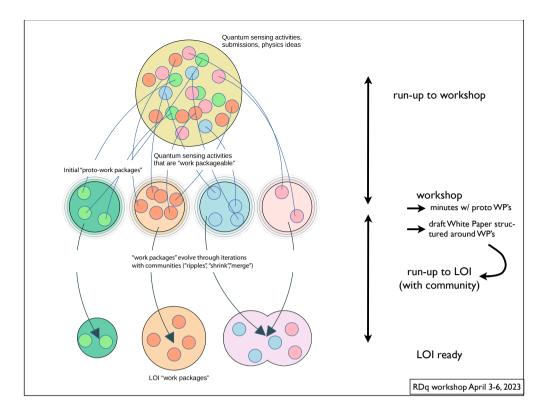
- i) Promote the <u>development</u> of advanced <u>quantum sensing technologies;</u>
- ii) Investigate and adapt state-of-the-art developments in quantum technologies to <u>particle physics</u>;
- iii) Establish the necessary <u>frameworks</u> and mechanisms to allow exploration of emerging technologies;
- iv) Develop and provide advanced <u>enabling capabilities and infrastructure</u>.

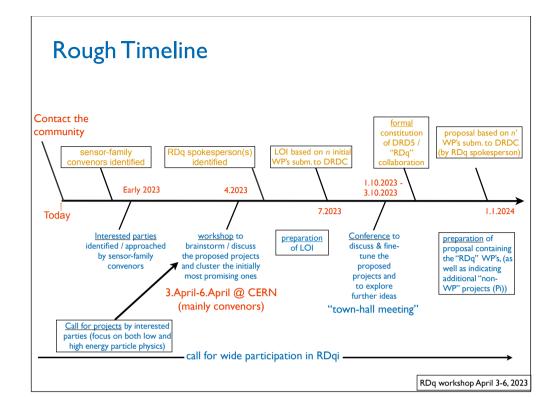
the goals are not linked to CERN (nor accelerator-based particle physics) specifically

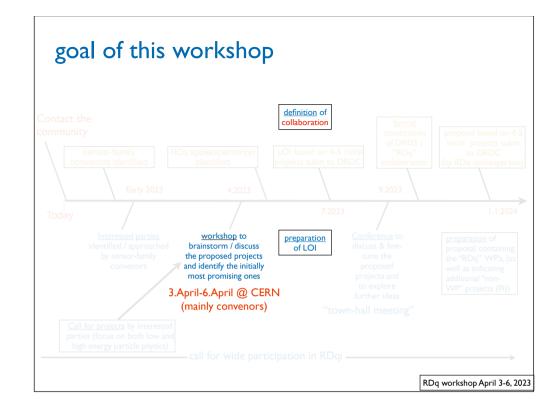
They cover the full range of particle physics, from ultra-light particles/ fields all the way up to particles produced at accelerators, including tests of fundamental symmetries.

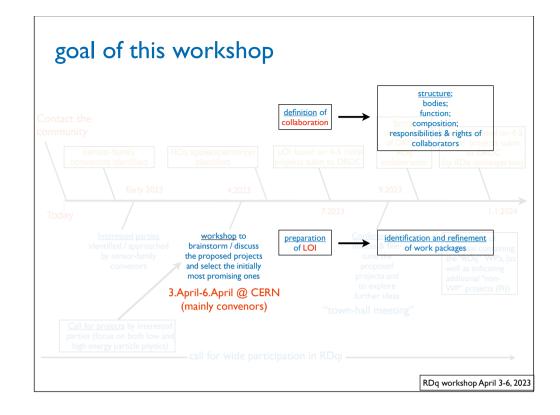
The idea is to look at the required technologies to advance promising approaches, and to focus on those that are beyond the capabilities of groups working in isolation;

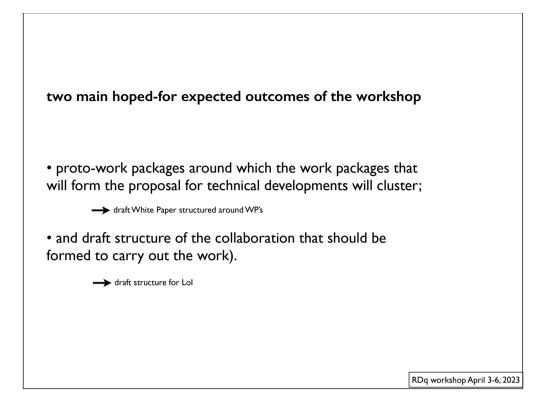

• not to merely monitor advances, but to actively drive them.


• some of the technologies being contemplated may drop out - in spite of their interest - since they do not require collaboration across groups and/or fields in order to be developed and pursued.


• technologies that do however require collaboration are at risk of not being developed, since they either require too many resources, or too much multi-disciplinary knowledge.


Those) are the 'work packages' we'd be looking for and that would justify a global collaboration


RDq workshop April 3-6, 2023

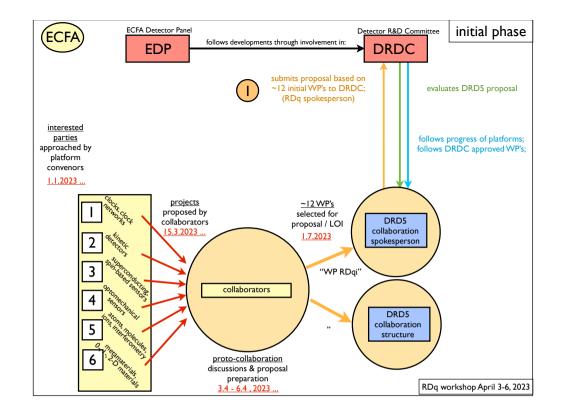


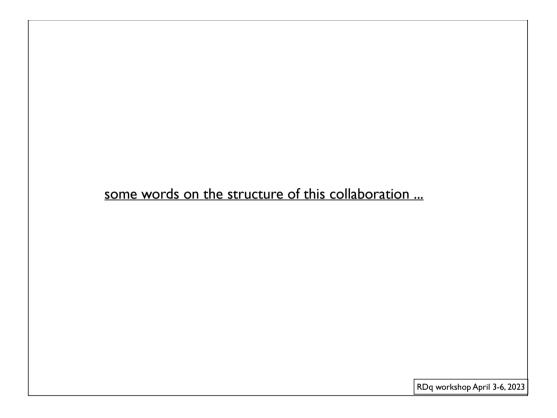
next steps after that

After the workshop, we'll <u>publicize</u> these and - more importantly - open the door to all to provide their input, shape the process, etc.

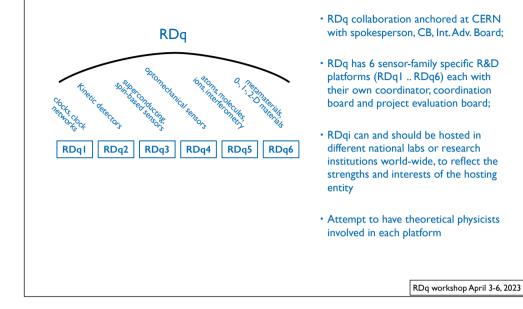
This sequence addresses the problem that kick-starting something like this in a full room is harder than taking it in two steps,

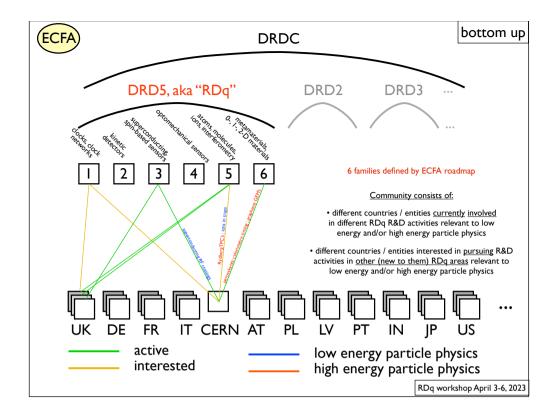
• a first one to provide some rough targets (which is what the output of this workshop should provide) - "crystallization centers"

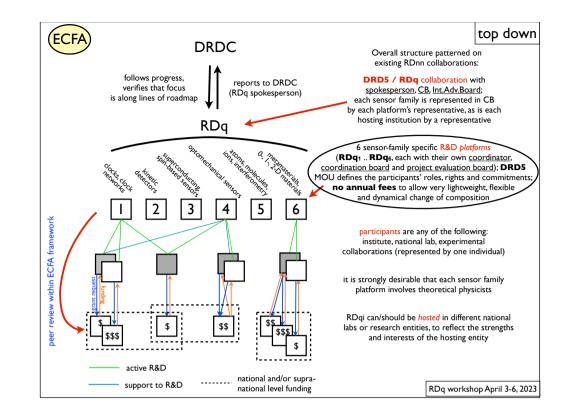

• and then an open process with contributions from all

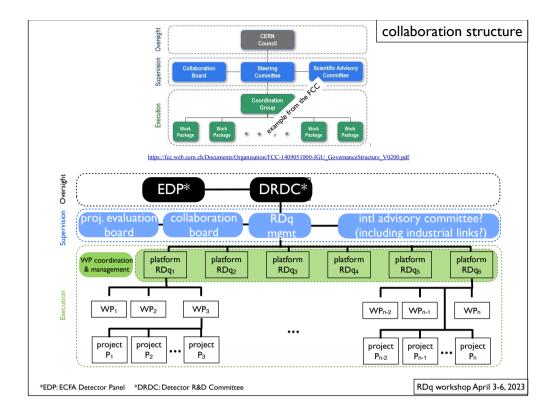

that will hopefully result in clarifying / detailing:

• WP's • groups interested in participating

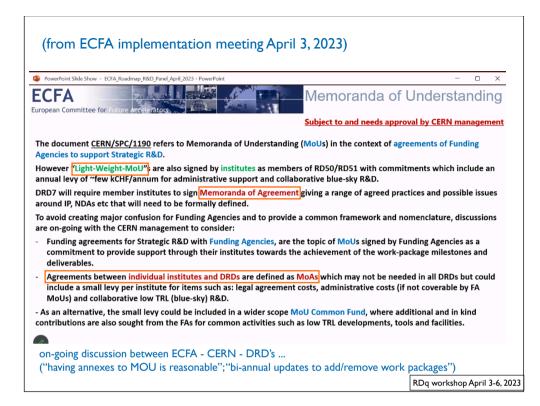

• cost of WP

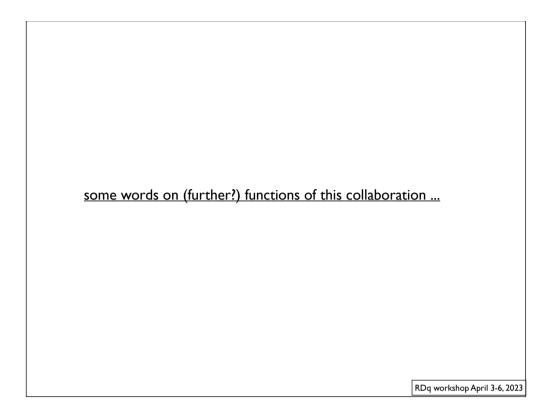

RDq workshop April 3-6, 2023

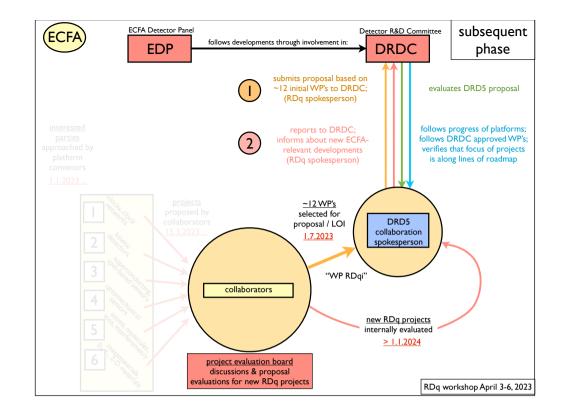


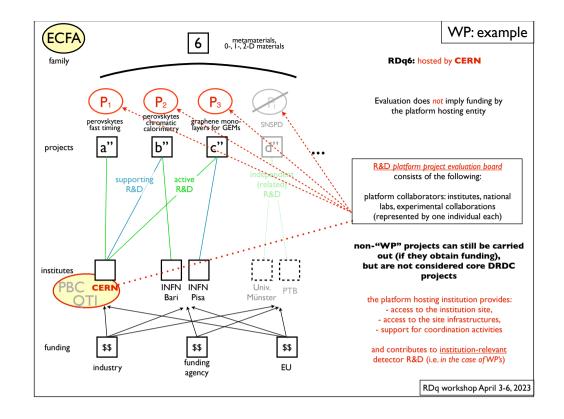


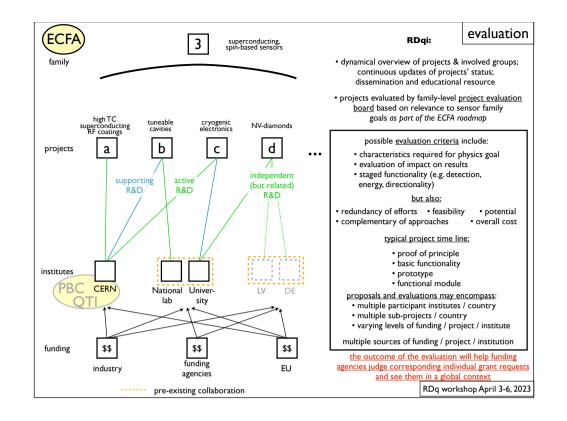
RDq Collaboration and Platforms

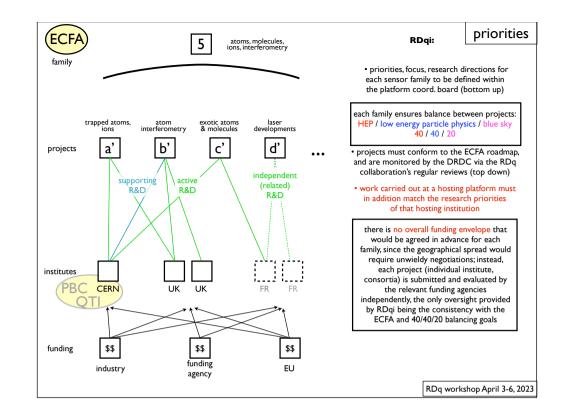


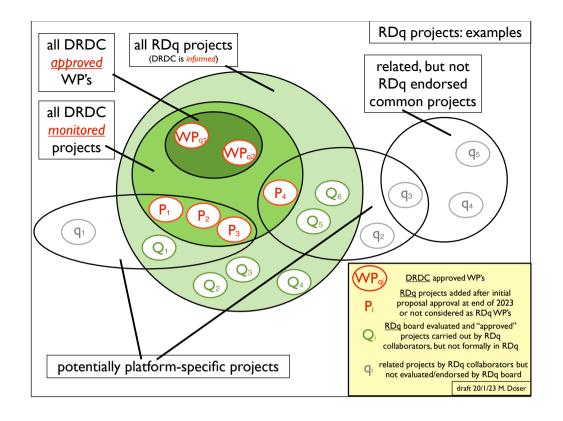


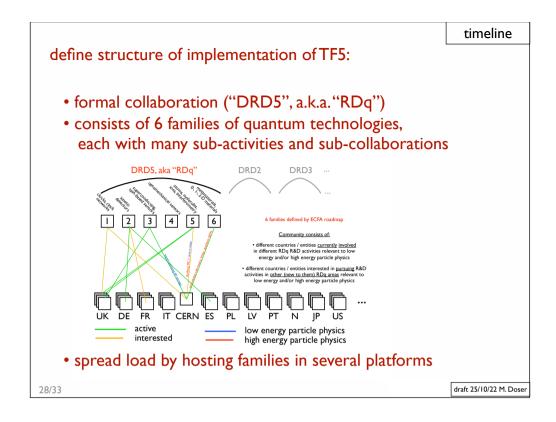


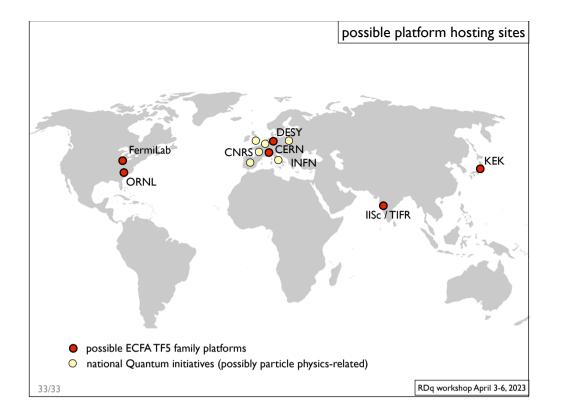


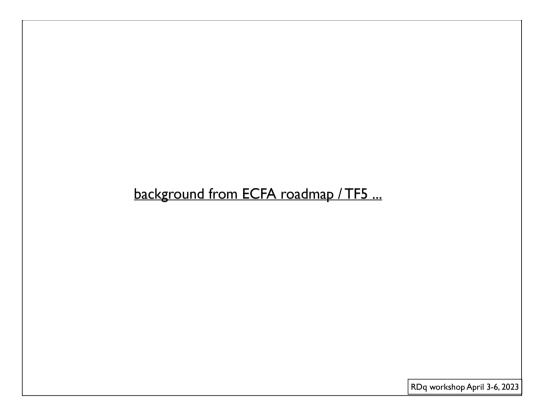

	Committee (IP, speakers, rep resources, DRD :	orting,		pration board r, deputy chair)			•
	Administrati	ion	Spokespers	sons (& deputies)		DRDC (ECFA-CERI	v)
WG 1 (DRDT3.1) Monolithic CMOS sensors	WG 2 (DRDT3.2) Sensors for tracking and Calorimetry with space/time and/or energy resolution	WG 3 (DRDT3.3) Radiation damage and ultra high fluences	WG 4 (DRDT3.x) Simulations	WG 5 (DRDT3.x) New Characterization Methods, Techniques and Infrastructures	WG 6 (DRDT3.3) Non-silicon semiconductor and other material studies	WG 7 (DRDT3.4) Interconnect and device Fabrication technologies	WG 8 Dissemination and outreach
Investigate Monolithic Active Pield Sensors (MAVS) than may achieve very high spatial resolution and very low mass. Understand radiation hardness limits of MAPS. Investigate the use of State-of-the-art commercial CMOS in tracking and vertex Explore the use of spasive CMOS as a complement to standard sensors.	Develop ultra-fast detectors, enabling 4D tracking to deal with multiple interactions con- crossing (die-up). Understand the ultimate orssing (die-up). Understand the ultimate inter of precision timing in sensors, with and without internal multiplication. Investigate new semiconductor and technology processes with faster signal development and low noise readout properties.	Undestrand microscopic properties of detectors at extreme fluences. Understand the limit of semiconductors at high fluences. Study innovative materials Charachterization of defects in semiconductors	Verify and prepare the TCAD tools for use in various DRDTs Improve and develop MC tools Develop and implement new matation had device matation had device matametrizations tools for data processing (digitization, electronics)	Explore the use of new techniques to characterize detectors Develop common DAQ tools Inradiation facilities, including extreme filtences. Test beams IBIC studies	Understand the detailes of the damage of the WBG semiconduntos Develop methods for characterization and fabrication of detectors from innovative materials	Advanced Integration Technologies. Process capabilities for different wafer sizes and sensor material types. Alternative bonding technologies for ultra-thin wafers. Reduction of interconnection pitches	Participation congress Explore other applications (Nuclear physics, Astrophysics, Fusion) Contact industrial partners. Participation EU or similar funding projects Website











Anna Grassellino, Marcel Demarteau, ECFA: TF5 Michael Doser, Caterina Braggio, Stafford Withington, Peter Graham, John March-Russel, Andrew Geraci "Recommendations" • many fascinating opportunities in nascent fields encourage exploratory approaches • adapt funding profiles to both exploratory as well as consolidation approaches: • exploratory: funding cycle of 3 years, lightweight grant application, "fail early / fail often / proof-of-principle" mindset • consolidation: funding cycle of 10 years, after initial proof of principle, proposal • importance of interdisciplinarity • training not only of early stage researchers but also of established researchers • opportunistic (awareness of developments elsewhere - physics or industry)

Open symposium organi	Anna Grassellino, Marcel Demarteau, Michael Doser, Caterina Braggio, Stafford Withington, Peter Graham, John March-Russel, Andrew Geraci				
ECFA Detector R&D F	admap Symposium of Task Force 5 Quantum and Emerging Technologies				
<u>Symposium</u> :April 12, 20	21 https://indico.cern.ch/event/999818/				
	ECFA Detector R&D Roadmap Symposium of Task Force 5: Quantum and emerging technologies Monday 12 Apr 2021, 09:00 + 18:30 Europe/Zurich 09:00 - 09:15 Introduction 09:15 - 11:00 Science targets - Overview and Landscape 09:15 EDM searches & tests of Anndamental symmetries - Peter Flertinger / TU Munich 9:45 Tests of OM_ Inverdunction collapse, size effects, temporal separation, decoherence] 10:15 Multimeserger detection (including adm interferometer or magnetometer entworks) (Sizyane Baronton / Permispham				
14 presentations	10:45 Axion and other DM (as well as non-DM Ultra-light) particle searches Mina Arvanitaki / Perimeter Institute				
first block covering physics landscape following blocks focusing on technologies discussion of three important points	11.15 - 11.30 Colfee presi 11.30 Predictor spectroscopy and clocks, networks of sensors and of entangled systems (optical atomic clocks) David Hume / NIST 12.00 Novel ionic, atomic and molecular systems [Pafr, multiatomic molecules, exotic atoms] Marianna Safranova / U. Delaware 12.00 - 13.30 Lunck break 13.00 Predictors predictors on the Internological challenges, New Developmentsi 13.00 Suggeometric patienting (detectors: TES, SNSPD, Haloscopes, including single photon detection) 14.00 High sensitivity superconducting chycenic electronics, low noise amplifiers Statistord Weinington / Cambridge 14.00 Bloathand acion detectors Mark Veining on Cambridge 14.00 High sensitivity superconducting chycenic electronics, low noise amplifiers Statistord Weinington / Cambridge 14.00 Bloathand acion detectors Mark Veinington / Markenne Statistord Weinington / Cambridge 14.00 Bloathand acion detectors Mark Veinington / Markennes 15.00 Mechanical / optimechanical detectors Refere Veinington / Northwesterni 15.00 Significase techniques for neutrinos and axions godential speaker identified 16.15 Colfee break 16.15 Colfee break 16.25 Colman Interformenty at large scales (ground based, spee based) Jacon Hogan / Statistort 17.25 - 18.15 Discustors needed : decoustion proteins 18.55 Alon Interferonstry at large scales (ground based, spee based) Jacon Hogan / Statistort 17.25 - 18.15 Discustors aposte				
,	Networking - deertifying commonlatiles with neighboring communities Applying automatic technologies to high energy detectors 18.15 - 18.30 Wing-up				
1					

Quantum Technologies for High Energy Physics (QT4HEP) (Nov. 1-4, 2022) <u>https://indico.cern.ch/event/1190278/timetable/</u>		
	topics chosen to overlap with <u>CERN focus and expertise</u>	
Applications of superconducting technologies to particle detection Caterina Braggio (Univ. Padova (IT))	DM searches via RF, superconducting electronics, coatings, cavities	
Scaling up of atomic interferometers for the detection of dark matter Oliver Buchmuller (Imperial College (GB))	AION, MAGIS, DM searches via atom interferometers in vertical shaf	
Applying traps and clocks to the search for new physics Piet Schmidt (Univ. Hannover / PTB (DE))	AD, ISOLDE: symmetry & BMS tests via precision spectroscopy	
Applications of quantum devices to HEP detectors Ian Shipsey (University of Oxford (GB))	Quantum systems for HEP (novel or enhanced detectors)	
Molecular systems for tests of fundamental physics Steven Hoekstra (Univ. Groeningen (NL))	AD, ISOLDE: symmetry & BMS tests via precision spectroscopy	
Development of detectors for ultra-low energy neutrinos Gianluca Cavoto (Sapienza Universita e INFN, Roma I (IT))	neutrino physics at the low energy frontier (CNB)	
	Mumbai, 22.2.2023	